

Baltic LFC block FRR dimensioning forecast 2024-2031

2022-09-16 Elering AS AS "Augstsprieguma tīkls" LITGRID AB

Contents

Со	Contents					
1	Pur	pose of the document	3			
2	Met	hod	3			
3 Assumptions						
4 Input data						
4	1.1	aFRR forecast	4			
4	1.2	mFRR downwards forecast	5			
4	1.3	mFRR upwards forecast	6			
5	Con	clusions	8			

1 Purpose of the document

This document is developed by Baltic TSOs (Litgrid, AST, Elering) to provide information about long term forecast of frequency restoration reserves (FRR) capacity volumes for the Baltic Load Frequency Control (LFC) block for period 2024-2031. The forecasted capacity of FRR reflects Baltic LFC block demand and will be procured in common Baltic Balancing capacity market.

2 Method

FRR capacity estimates provided in this document are based on Baltic LFC block concept document FRR dimensioning principles1. The method takes into account the historic imbalances, outage rates of HVDC and large power plants.

The distribution of FRR capacities for each LFC area reflects the general sharing of procurement costs of shared FRR capacities. The capacities will be procured in the Baltic capacity market, where the FRR capacities can be located in any Baltic LFC area taking into account the available allocated capacities of cross-borders and the LFC area FRR reserve requirement.

3 Assumptions

Throughout the calculations several assumptions have been considered to investigate the FRR capacity dimensioning forecast between 2024 and 2031:

- Only imbalances caused by renewable energy sources (RES) have been considered to have an influence on increase of area control error (ACE). Base ACE remained unchanged;
- 2021 has been considered as the base year for the analysis;
- Baltic LFC block considers a symmetrical automatic frequency restoration reserves (aFRR) demand, where largest value between aFRR downwards and upwards prevails as the aFRR need;
- It has been considered that a shift from 60 min to 15 min market time unit (MTU) will reduce only manual frequency restoration reserves (mFRR) needs by 20%;
- Considering the possible inaccuracies in the forecast, a range of FRR values have been assessed based on the 1st, 5th, 95th, 99th percentile results. Where 1st and 99th percentiles evaluate high reserve case and 5th and 95th percentile low reserve case.

4 Input data

As an input data for the analysis, the data from each Baltic TSO has been gathered regarding the foreseen development of RES from 2024 to 2031, Elering and AST has used RES capacity increase data provided in ten-year network development plan, Litgrid has used latest RES capacity increase forecast data (August 2022). The summarized data is provided Table 1.

¹ <u>https://www.litgrid.eu/uploads/files/dir566/dir28/dir1/13_0.php</u> <u>https://elering.ee/sites/default/files/2021-01/Baltic%20Load-</u> <u>Frequency%20Control%20concept%20document.pdf</u> <u>https://www.ast.ly/sites/default/files/editor/Baltic_Load_Frequency/Control</u>

```
https://www.ast.lv/sites/default/files/editor/Baltic_Load_Frequency_Control_concept_document.pdf
```

Lithuania											
Year	2024	2025	2026	2027	2028	2029	2030	2031			
Wind On-Shore	1590	1800	2200	2700	3000	3300	3600	3600			
Wind Off-Shore	0	0	0	0	700	700	1400	1400			
Sun	2160	2880	3600	3680	3760	3840	3920	4000			
Latvia											
Year	2024	2025	2026	2027	2028	2029	2030	2031			
Wind On-Shore	200	243	285	327	369	411	495	545			
Wind Off-Shore	0	0	0	0	0	0	495	495			
Sun	58	71	90	108	126	144	180	207			
Estonia											
Year	2024	2025	2026	2027	2028	2029	2030	2031			
Wind On-Shore	326	326	326	576	576	576	716	716			
Wind Off-Shore	0	0	0	0	0	0	350	350			
Sun	716	818	920	950	980	1010	1040	1070			
Baltics											
Year	2024	2025	2026	2027	2028	2029	2030	2031			
Wind On-Shore	2116	2369	2811	3603	3945	4287	4811	4861			
Wind Off-Shore	0	0	0	0	700	700	2245	2245			
Sun	2934	3769	4610	4738	4866	4994	5140	5277			

Table 1 RES installed capacity increase based on Baltic power system estimations in MW.

4.1 aFRR forecast

The aFRR capacity is dimensioned to balance the variations in the power system due to load variation, inadvertent non-observance of schedules by producers, and prediction errors of RES production. The aFRR is activated via automatic controllers that monitor the system ACE. The aFRR capacity will be calculated based on the recommendation of Continental Europe Synchronous Area Framework Agreement (CE SAFA) Policy 1² statistical approach. The activated aFRR is replaced by mFRR activations for longer system imbalances.

Figure 1 represents the forecast of aFRR capacity needs in Baltic LFC block. It is expected that reserve amount gradually increases. Based on calculation results it is foreseen that the aFRR capacity needs in 2024 will be 132 MW in the Baltic LFC block, where in 2031 the capacity needs increase up to 193 MW of aFRR upwards and downwards.

Highest aFRR capacity increase is expected in Lithuania LFC area from 65MW in 2024 up to 103MW in 2031.

² <u>https://eepublicdownloads.entsoe.eu/clean-</u>

documents/SOC%20documents/SAFA_for_RG_CE/SAFA_for_RG_CE_-_03_-_Annex_01_-_Policy_on_Load-Frequency_Control_and_Reserves_220607.docx

aFRR forecast 2024-2031

Figure 1 aFRR forecast in Baltic LFC Block

4.2 mFRR downwards forecast

The mFRR capacity is managed by the TSO operators to cover reference incidents and long-term imbalances in the power system to free up aFRR capacities for short-term imbalances. mFRR downward is needed to cover excessive generation or missing load in the power system. mFRR downwards capacity needs displayed in Figure 2 and Figure 3 are defined for two cases low reserve and high reserve. Capacity values gradually increase in both scenarios, where in 2024 it is foreseen that the need of mFRR downwards capacity will be -568 MW in both cases, however in 2031 the values range between -809 (low reserve case) and -1187 MW (high reserve case). Highest mFRR downward capacity increase is expected in Lithuania LFC area from -279MW in 2024 up to a value between -432MW and -635MW in 2031.

mFRR downwards forecast 2024-2031 5th

Figure 2 mFRR downwards forecast 5th percentile in Baltic LFC block

mFRR downwards forecast 2024-2031 1st

Figure 3 mFRR downwards forecast 1st percentile in Baltic LFC block

4.3 mFRR upwards forecast

mFRR upwards capacity is needed to cover missing generation or excessive load in the power system. mFRR upwards capacity needs displayed in Figure 4 and Figure 5 are defined for two cases low reserve and high reserve. Values gradually increase in both scenarios, where in 2024 it is foreseen that the need of mFRR upwards capacity will be between 570 (low reserve case) and 689

MW (high reserve case), in 2031 the values range between 1112 (low reserve case) and 1445 MW (high reserve case).

Highest increase for mFRR upward capacity is expected in Lithuania LFC area between 280 MW and 339 MW in 2024 and between 594 MW and 772 MW in 2031.

mFRR upwards forecast 2024-2031 95th

Figure 4 mFRR upwards forecast 95th percentile in Baltic LFC block

mFRR upwards forecast 2024-2031 99th

Figure 5 mFRR upwards forecast 99th percentile in Baltic LFC block

5 Conclusions

- 1 Baltic TSOs foresee a rapid increase in FRR needs in Baltic LFC block due RES capacity increase from 2024 to 2031.
 - a. aFRR needs in Baltics is foreseen to increase from 132 MW to 193 MW.
 - b. mFRR upwards needs are foreseen to increase from 570 to 1112 MW for low reserve case (5th and 95th percentile) and from 689 MW to 1445 MW for high reserve case (1st and 99th percentile),
 - c. mFRR downwards needs are foreseen to increase from -568 (both cases) to a value between -809 (low reserve case) -1187 MW (high reserve case).
- 2. All results are heavily influenced by foreseen RES increase, therefore additional increase or decrease in RES development would have an impact to FRR capacity needs in Baltic LFC block.
- 3. The provided values shall be considered estimated values, while the actual FRR needs for the procurement in common Baltic Balancing capacity market will be calculated based on the actual RES capacities, outage rates and imbalance data following the Baltic LFC block FRR dimensioning methodology that will be developed and published for public consultation by Q1 2023.